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Abstract 
This paper studies the effect of different control strategy parameters on fuel economy for hybrid electric 

vehicles. The parameters with significant effect as well as the key component sizing are used in the 

optimization algorithm to reduce fuel consumption. The optimization algorithm applied in this paper is the 

PSO algorithm with a proposed approximation approach. The approximation approach is an interpolation 

method used to generate search-space in the early optimization stage to improve the computational 

efficiency. Simulations are carried out in Powertrain System Analysis Toolkit (PSAT). The results show 

that the computational load of the optimization algorithm is greatly reduced for both parallel and series 

HEVs. This method could be further applied to investigate the optimized parameters for different driving 

cycles. In this paper, three driving cycles are applied: 2 NEDC, 4 NEDC, and 6 NEDC. The optimized 

parameters from each of these three driving cycles are used to calculate the fuel economy for all the three 

driving cycles. Comparing the average and the standard deviation of fuel economy, it is suggested that the 

parameters optimized from the driving cycle with longer distance provide a better result. This study could 

be further investigated on the relation between optimized parameters and characteristics of driving cycles to 

achieve an interactive control strategy parameter advising system in the future.  

Keywords: HEV (hybrid electric vehicle), optimization, efficiency, energy consumption, simulation  

1 Introduction 
Transportation consumes a large portion of the 
world’s total primary energy and produces a 
huge amount of exhaust emissions. The energy 
conversion is highly inefficient in the vehicles 
powered by the conventional (IC) internal 
combustion engine. Hybrid electric vehicle 
(HEV) is an alternative that mixes the strength of 

the IC engine and battery as the power source to 
propel the vehicle.  
To achieve high energy efficiency for HEVs, many 
studies have been done under the topic of HEV 
performance optimization. The most popular 
aspects are the optimization of fuel economy and 
exhaust emissions. Traditional optimization 
methods have been applied to optimize powertrain 
sizing for less fuel consumption and exhaust 
emissions [1]. These methods have the 
requirements of continuity, differentiability and 
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Lipshitz conditions on the objective function [2]. 
In contrast, meta-heuristic optimization 
algorithms, such as particle swarm optimization 
(PSO), evolutionary algorithm (EA) and parallel 
chaos optimization algorithm (PCOA) have been 
used for the optimization of component sizing 
and control strategy. Wu et al. [2] used a PSO-
based methodology for parameter optimization to 
reduce fuel economy, exhaust emissions, and 
costs of HEV. This multi-objective optimization 
was converted into a single-objective 
optimization problem using a goal-attainment 
method. Galdi et al. [3] and Piccolo et al. [4] 
used genetic algorithms to optimize component 
sizing and control strategy parameters, 
respectively. The parameter optimization of a 
series HEV was studied in [5] by evolutionary 
algorithms. The multi-objective optimization 
method was used to provide a set of trade-off 
optimal solutions between the fuel economy and 
emissions. In [6], PCOA was used for the 
optimization of PHEV (Plug-in Hybrid Electric 
Vehicle) component sizing.  
In optimization algorithms, the selection of 
optimization parameters plays a crucial role in 
improving fuel economy. This paper studies the 
effect of different control strategy parameters for 
optimization on fuel economy. The parameters 
with significant effect as well as component 
sizing (Peng and Pmotor) are selected as 
optimization parameters in the PSO algorithm. 
An approximation method is applied to 
accelerate the generation of the search-space in 
the early optimization stage. Moreover, this 
paper also investigates the relation between 
optimized parameters and driving cycles. Instead 
of using pre-defined parameters, this work may 
make it possible to adjust control strategy 
parameters during real-time driving for better 
fuel economy in the future work.  

2 Proposed Method 
The framework of the proposed work is shown in 
Figure 1. Powertrain System Analysis Toolkit 
(PSAT) is used in this paper to calculate the fuel 
economy for the defined drivetrain configuration 
and parameters. The parameters that have 
important effect on the value of fuel economy are 
selected as the optimization parameters in the 
optimization algorithm. The optimization 
algorithm is carried out to find out the optimum 
parameters. This work attempts to find out an 
efficient way for improving fuel economy. 
The configurations of the parallel HEV (P-HEV) 
and the series HEV (S-HEV) built in PSAT are 

shown in Figure 2. The main specifications of the 
vehicle are listed in Table 1.  
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Figure 1: Framework of proposed work 

 

 
(a) Parallel HEV configuration 

 
(b) Series HEV configuration 

Figure 2: Two configurations of HEVs in PSAT 

 
Table 1: Main specifications of HEV 

Vehicle name Ford explorer  
Vehicle body mass 1220 kg 
Vehicle cargo mass 136 kg 
Frontal area 2.46 m2 
Fraction of weight to front 
wheels 

0.47 

Vehicle wheel base 2.889 m 
Drag coefficient 0.41 
Battery type Li-ion 
Number of battery modules 25 
Cell number 75 
Capacity 6 Ah 
Mass of one cell 0.37824 kg 
Mass per wheel 30 kg 
Maximum braking torque 2000 Nm 
Inertia per wheel 1 kg·m2 
Wheel radius 0.34865 m 
0th order coefficient of rolling 
resistance polynomial 

0.009 

1st order coefficient of rolling 
resistance polynomial 

0.00012 
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The fuel economy for different parameter values 
is calculated from PSAT. The objective of the 
optimization algorithm is to find out the values of 
the optimization parameters that provide the 
largest fuel economy. PSO algorithm developed 
by Kennedy and Eberhart [7] is applied in this 
paper. In this algorithm, each particle keeps 
tracking its personal best solution pbest; 
meanwhile, gbest is tracked as the best solution 
so far by any particle. The movement of each 
particle is related to its current position, current 
velocity, the distance from pbest and the distance 
from gbest. PSO accelerates each particle toward 
the locations of its pbest and gbest by adjusting 
the velocity with a random weighted 
acceleration, as expressed in the following 
equations.   

1
1 1

2 2

( )

 ( )

k k k k k
i i i i i

k k k
i i

V wV c r pbest X

c r gbest X

+ = + −

+ −
 (1) 

 
1 1k k k

i i iX X V+ += +  (2) 
 
where 𝑉𝑖𝑘 is the velocity of particle i at iteration 
k, w is inertia weight, c1 and c2 are two positive 
constants, and 𝑟1𝑖𝑘  and 𝑟2𝑖𝑘  are two uniformly 
distributed random numbers between 0 and 1. 
Further, 𝑝𝑏𝑒𝑠𝑡𝑖𝑘 is the location of the ith particle’s 
personal best solution up to iteration k, 𝑔𝑏𝑒𝑠𝑡𝑘 is 
the location of the population’s best solution up 
to iteration k, and 𝑋𝑖𝑘 is the position vector of the 
ith particle at iteration k.  
Since the calculation of fuel economy from 
PSAT involves heavy computational load, the 
optimization, especially for the multi-
dimensional search-space, is quite time-
consuming. To accelerate this process, a rough 
search-space is generated in the early 
optimization stage. For the sake of explanation, 
one dimensional search-space is used as shown 
in Figure 3. A rough mesh is generated between 
the lower bound and upper bound of the 
optimization parameter. In Step 1, the fuel 
economy for each mesh point is calculated from 
PSAT as the nodes shown in Figure 3(a). The 
fuel economy for the other parameter values in 
between is calculated by interpolation instead of 
using PSAT to reduce computational costs.  
Using this estimated search-space, PSO is 
applied to find the potential region where the 
optimum parameter (the one with the maximal 
fuel economy) may exist. In this example, the 
potential region is the one with shadow in Figure 
3(a). The boundary of this region defines the 

upper and lower bond of the search-space in Step 2 
as shown in Figure 3(b). In Step 2, the 
interpolation is done with a finer mesh. Finally, a 
small region or several small regions will be 
obtained and used in the normal PSO algorithm.  
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(b) Step 2 

Figure 3: Illustration of interpolation method 

The optimization parameters studied in this paper 
are the parameters in control strategy and 
component sizing, such as SOCmax, SOCmin, PEoff, 
PEon, toff, TargetSOC, and Kp in control strategy, as 
well as Peng and Pmotor in component sizing. The 
parameter descriptions are listed in Table 2. The 
framework of the proposed optimization work is 
shown in Figure 4. It starts with investigating the 
effect of each control strategy parameter on fuel 
economy. The parameters have significant effect 
and the component sizing parameters are used as 
the optimization parameters in the PSO algorithm 
with the approximation method. Similarly, this 
parameter optimization process is carried out with 
various driving cycles.  
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Table 2: Descriptions of optimization parameters 

Parameter Unite Description 
SOCmax % SOC above which the engine is turned off 
SOCmin % SOC below which the engine is turned on 
PEoff kW Max power for the engine to turn off 
PEon kW Min power for the engine to turn on 
toff s Once off, minimum time for the engine to stay off 
TargetSOC % SOC charge map target point 
Kp --- Regulation of the engine speed when recharge the battery 
Peng kW Peak engine power 
Pmotor kW Peak motor power 
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Figure 4: Proposed optimization framework  

 

3 Results 
To study the effect of each parameter on the fuel 
economy, only one parameter is studied at each 
time. All other parameters are kept at the default 
value. As shown in Figure 5, the NEDC is 
repeated four times as the driving cycle. 
Simulations are carried out for P-HEV and S-
HEV. The simulation results in Figure 6 show 
the range of fuel economy for each of the seven 

control strategy parameters in the P-HEV. The fuel 
economy of the default setting is defined as the 
benchmark 100% to compare the improvement of 
the fuel economy by each control strategy 
parameter. The simulation results indicate that the 
value of fuel economy varies in a wide range if 
SOCmax is changed. In contrast, the effect of 
SOCmin is not as important as the one of SOCmax 
and the other control strategy parameters for P-
HEV.  

 

 
Figure 5: 4 NEDC driving cycle 
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Figure 6: Effect of control strategy parameters on fuel economy for P-HEV 

 
A better optimization result (fuel economy) could 
be achieved if the parameters with high impact 
on fuel economy are all selected for the 
optimization algorithm. From the simulation 
result shown in Figure 6, the control strategy 
parameters SOCmax, TargetSOC, PEon, and toff are 
selected. The optimization parameter vector in 
this paper is [SOCmax, TargetSOC, PEon, toff, Peng, 
Pmotor]. However, the generation of the search-
space for PSO would have to go through heavy 
computation, especially for the multi-
dimensional space. To reduce the computational 
load, an approximation method is used to 
generate a rough search-space with the 
interpolation method in the early optimization 
stage. The optimized results with/without the 
approximation method for one dimensional case 
are compared in Figures 7(a) and 7(b). In normal 
approach without approximation, the 
computational load is defined as 100% and its 
optimal fuel economy is used as the reference for 
comparison. The results in Figure 7(a) show that 
the computational load is significantly reduced in 
both P-HEV and S-HEV by using the 
approximation method; moreover, this 

approximation does not cause large errors in fuel 
economy as shown in Figure 7(b).  
Similarly, the simulation is carried out to obtain 
the optimum parameters for various driving cycles. 
The profile of the driving cycles with 2, 4, and 6 
NEDC are shown in Figure 8. Table 3 summaries 
the specifications for these driving cycles. The 
optimum parameters from 2, 4, and 6 NEDC are 
used for these three driving cycles. Figure 9 
represents the average and the standard deviation 
of the fuel economy in three driving cycles using 
the optimized parameters from 2 NEDC, 4 NEDC, 
and 6 NEDC, respectively. The results show that 
using the optimized parameters from 6 NEDC for 
the three driving cycles provides the largest 
average value and the smallest standard deviation 
in fuel economy. Using the optimized parameter 
from 2 NEDC for these three driving cycles 
achieves the smallest fuel economy and the largest 
standard deviation. Since the mainly difference 
among these three driving cycles is the distance, 
the results may suggest that using the parameters 
optimized by a longer distance for the driving 
cycles with various distances has a smaller 
deviation and a better average fuel economy.  
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(b) Fuel economy 

Figure 7: Study the efficiency of the approximation method for optimization 

 

 
(a) Driving cycle with 2 NEDC 

 

 
(b) Driving cycle with 4 NEDC 

 

 
(c) Driving cycle with 6 NEDC 

Figure 8: Profile of various driving cycles 
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Table 3: Specifications of various driving cycles 

  2 NEDC 4 NEDC 6 NEDC 
Cycle time (s) 2361  4723 7085 
Distance (mile) 13.6866 27.3732 41.0598 

Speed (mile/h) 
Maximum 74.6  74.6 74.6 
Average 20.8601  20.8601 20.8601 
Standard deviation 19.23 19.23 19.23 

Acceleration (m/s2) 
Maximum 1.0729 1.0729 1.0729 
Average  0.594 0.594 0.594 
Standard deviation 0.25222 0.25209 0.25205 

Deceleration (m/s2) 
Maximum  -1.4305  -1.4305 -1.4305 
Average -0.78881 -0.78881 -0.78881 
Standard deviation 0.21749 0.21734 0.21729 

Stop 

Number  26 52 78 
Frequency (stop/mile) 0.001180403 0.001180403 0.001180403 
Duration (s) 588 1176 1764 
Percent of cycle (%) 24.904701 24.899428 24.897671 

 
 

 
Figure 9: Fuel economy for various driving cycles 

 
In this paper, UDDS is also used as the driving 
cycle to compare with the results from NEDC. It 
is found that the values of some optimum 
parameters in UDDS are quite different from the 
ones obtained using NEDC as the driving cycle. 
This may be due to the fact that more 
characteristics of the driving cycle, besides the 
driving distance, are different. In the future work, 
the relation between the optimized parameters 
and the characteristics of driving cycles (such as 
average speed, idle duration, stop frequency, 
acceleration and deceleration) will be 
investigated. This could help to devise a dynamic 
control strategy for different driving cycles. 
Thus, good fuel economy could be expected for 
the condition without pre-defined/predictive 
driving cycles.  

Furthermore, the optimization objective in this 
paper is to maximize fuel economy. The 
optimization parameters include component sizing 
and control strategy parameters. In control 
strategy, the fuel economy is related to the battery 
performance on charging and discharging. The 
charging and discharging cycles, depth of 
discharge, and driving frequency all have an 
impact on battery’s life time and durability. In 
view of the component availability and price, it 
may be necessary to further consider the price-
performance trade-off for key components. The 
optimization may take the above discussed factors 
(fuel economy, battery life time, component 
performance, and component cost) into 
consideration by using the cost to build up the 
relation with these factors. The relation of the costs 
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with the battery life time and component sizing 
can be found in [8-9].   

4 Conclusions 
This paper studies the effect of different control 
strategy parameters and component sizing on fuel 
economy of HEVs. The ones with significant 
effects (SOCmax, TargetSOC, PEon, toff, Peng, and 
Pmotor) are used in the PSO algorithm with the 
proposed approximation method to reduce the 
computational load of the optimization 
algorithm. The optimized parameters for 
different driving cycles are investigated. The 
simulation results imply that using the optimized 
parameters from a longer distance for the driving 
cycles with various distances achieves a better 
result in fuel economy. The further investigation 
on the relation between the optimized parameters 
and the characteristics of driving cycles has the 
potential to design a dynamic advising system for 
control strategy parameters. This system may 
provide good performance on the driving cycles 
without prediction.  
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