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Abstract

This paper studies the effect of different control strategy parameters on fuel economy for hybrid electric
vehicles. The parameters with significant effect as well as the key component sizing are used in the
optimization algorithm to reduce fuel consumption. The optimization algorithm applied in this paper is the
PSO algorithm with a proposed approximation approach. The approximation approach is an interpolation
method used to generate search-space in the early optimization stage to improve the computational
efficiency. Simulations are carried out in Powertrain System Analysis Toolkit (PSAT). The results show
that the computational load of the optimization algorithm is greatly reduced for both parallel and series
HEVs. This method could be further applied to investigate the optimized parameters for different driving
cycles. In this paper, three driving cycles are applied: 2 NEDC, 4 NEDC, and 6 NEDC. The optimized
parameters from each of these three driving cycles are used to calculate the fuel economy for all the three
driving cycles. Comparing the average and the standard deviation of fuel economy, it is suggested that the
parameters optimized from the driving cycle with longer distance provide a better result. This study could
be further investigated on the relation between optimized parameters and characteristics of driving cycles to

achieve an interactive control strategy parameter advising system in the future.

Keywords: HEV (hybrid electric vehicle), optimization, efficiency, energy consumption, simulation

the IC engine and battery as the power source to

1 Introduction propel the vehicle.

T ta | " £ th To achieve high energy efficiency for HEVs, many
ransE)or ation consumes a largé portion ot the studies have been done under the topic of HEV

world’s total primary energy and produces a

h t of exhaust emissi Th performance optimization. The most popular
uge amount ot exnaust emissions. 1he energy aspects are the optimization of fuel economy and
conversion is highly inefficient in the vehicles

4 by th tonal (IC) internal exhaust emissions.  Traditional optimization
powered Dy the conventiona ( .) Interna methods have been applied to optimize powertrain
combustion engine. Hybrid electric vehicle

. . . sizing for less fuel consumption and exhaust
(HEV) is an alternative that mixes the strength of emissions [1]. These methods have the

requirements of continuity, differentiability and
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Lipshitz conditions on the objective function [2].
In  contrast, meta-heuristic ~ optimization
algorithms, such as particle swarm optimization
(PSO), evolutionary algorithm (EA) and parallel
chaos optimization algorithm (PCOA) have been
used for the optimization of component sizing
and control strategy. Wu et al. [2] used a PSO-
based methodology for parameter optimization to
reduce fuel economy, exhaust emissions, and
costs of HEV. This multi-objective optimization
was converted into a  single-objective
optimization problem using a goal-attainment
method. Galdi et al. [3] and Piccolo et al. [4]
used genetic algorithms to optimize component
sizing and control strategy parameters,
respectively. The parameter optimization of a
series HEV was studied in [5] by evolutionary
algorithms. The multi-objective optimization
method was used to provide a set of trade-off
optimal solutions between the fuel economy and
emissions. In [6], PCOA was used for the
optimization of PHEV (Plug-in Hybrid Electric
Vehicle) component sizing.

In optimization algorithms, the selection of
optimization parameters plays a crucial role in
improving fuel economy. This paper studies the
effect of different control strategy parameters for
optimization on fuel economy. The parameters
with significant effect as well as component
sizing  (Peng and Proo) are selected as
optimization parameters in the PSO algorithm.
An approximation method is applied to
accelerate the generation of the search-space in
the early optimization stage. Moreover, this
paper also investigates the relation between
optimized parameters and driving cycles. Instead
of using pre-defined parameters, this work may
make it possible to adjust control strategy
parameters during real-time driving for better
fuel economy in the future work.

2 Proposed Method

The framework of the proposed work is shown in
Figure 1. Powertrain System Analysis Toolkit
(PSAT) is used in this paper to calculate the fuel
economy for the defined drivetrain configuration
and parameters. The parameters that have
important effect on the value of fuel economy are
selected as the optimization parameters in the
optimization  algorithm. The  optimization
algorithm is carried out to find out the optimum
parameters. This work attempts to find out an
efficient way for improving fuel economy.

The configurations of the parallel HEV (P-HEV)
and the series HEV (S-HEV) built in PSAT are

shown in Figure 2. The main specifications of the
vehicle are listed in Table 1.

Dri_vetrai_n PSAT Optimization
configuration (Powertrain System algorithm
Analysis Toolkit)
Parameters

Component
sizing
Control
strategy

Figure 1: Framework of proposed work
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Figure 2: Two configurations of HEVs in PSAT

Table 1: Main specifications of HEV

Vehicle name Ford explorer
Vehicle body mass 1220 kg
Vehicle cargo mass 136 kg
Frontal area 2.46 m°

Fraction of weight to front | 0.47
wheels

Vehicle wheel base 2.889m
Drag coefficient 0.41
Battery type Li-ion
Number of battery modules 25

Cell number 75
Capacity 6 Ah
Mass of one cell 0.37824 kg
Mass per wheel 30 kg
Maximum braking torque 2000 Nm
Inertia per wheel 1 kg-m*
Wheel radius 0.34865 m

0™ order coefficient of rolling | 0.009
resistance polynomial

1% order coefficient of rolling | 0.00012
resistance polynomial
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The fuel economy for different parameter values
is calculated from PSAT. The objective of the
optimization algorithm is to find out the values of
the optimization parameters that provide the
largest fuel economy. PSO algorithm developed
by Kennedy and Eberhart [7] is applied in this
paper. In this algorithm, each particle keeps
tracking its personal best solution pbest;
meanwhile, gbest is tracked as the best solution
so far by any particle. The movement of each
particle is related to its current position, current
velocity, the distance from pbest and the distance
from gbest. PSO accelerates each particle toward
the locations of its pbest and gbest by adjusting
the wvelocity with a random weighted
acceleration, as expressed in the following
equations.

V< =wV S ok (pbest® — X)

k k k (1)
+C,I,; (ghest® — X/%)

Xik+1 — Xik +Vik+1 (2)

where V¥ is the velocity of particle i at iteration
k, w is inertia weight, c; and ¢, are two positive
constants, and r and X are two uniformly
distributed random numbers between 0 and 1.
Further, pbestF is the location of the i particle’s
personal best solution up to iteration k, gbest is
the location of the population’s best solution up
to iteration k, and X¥ is the position vector of the
i particle at iteration k.

Since the calculation of fuel economy from
PSAT involves heavy computational load, the
optimization, especially for the multi-
dimensional search-space, is quite time-
consuming. To accelerate this process, a rough
search-space is generated in the early
optimization stage. For the sake of explanation,
one dimensional search-space is used as shown
in Figure 3. A rough mesh is generated between
the lower bound and upper bound of the
optimization parameter. In Step 1, the fuel
economy for each mesh point is calculated from
PSAT as the nodes shown in Figure 3(a). The
fuel economy for the other parameter values in
between is calculated by interpolation instead of
using PSAT to reduce computational costs.
Using this estimated search-space, PSO is
applied to find the potential region where the
optimum parameter (the one with the maximal
fuel economy) may exist. In this example, the
potential region is the one with shadow in Figure
3(a). The boundary of this region defines the

upper and lower bond of the search-space in Step 2
as shown in Figure 3(b). In Step 2, the
interpolation is done with a finer mesh. Finally, a
small region or several small regions will be
obtained and used in the normal PSO algorithm.

A

Fuel economy

Parameter value

(@ Stepl

Fuel economy

Parameter value

(b) Step?2
Figure 3: lllustration of interpolation method

The optimization parameters studied in this paper
are the parameters in control strategy and
component sizing, such as SOCax, SOChin, Peoffs
Peon totr, Targetsoc, and K in control strategy, as
well as Peng and Pmotor In cOmponent sizing. The
parameter descriptions are listed in Table 2. The
framework of the proposed optimization work is
shown in Figure 4. It starts with investigating the
effect of each control strategy parameter on fuel
economy. The parameters have significant effect
and the component sizing parameters are used as
the optimization parameters in the PSO algorithm
with the approximation method. Similarly, this
parameter optimization process is carried out with
various driving cycles.
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Table 2: Descriptions of optimization parameters

Parameter | Unite | Description

SOC max % SOC above which the engine is turned off

SOChin % SOC below which the engine is turned on

Peott kW Max power for the engine to turn off

Peon kW Min power for the engine to turn on

tofs S Once off, minimum time for the engine to stay off
Targetsoc | % SOC charge map target point

Kp Regulation of the engine speed when recharge the battery
Peng kwW Peak engine power

P motor kW Peak motor power
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Figure 4: Proposed optimization framework

3 Results

To study the effect of each parameter on the fuel
economy, only one parameter is studied at each
time. All other parameters are kept at the default
value. As shown in Figure 5, the NEDC is
repeated four times as the driving cycle.
Simulations are carried out for P-HEV and S-
HEV. The simulation results in Figure 6 show

control strategy parameters in the P-HEV. The fuel
economy of the default setting is defined as the
benchmark 100% to compare the improvement of
the fuel economy by each control strategy
parameter. The simulation results indicate that the
value of fuel economy varies in a wide range if
SOCax is changed. In contrast, the effect of
SOCnin is not as important as the one of SOC.x
and the other control strategy parameters for P-
HEV.

the range of fuel economy for each of the seven
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Figure 5: 4 NEDC driving cycle
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Figure 6: Effect of control strategy parameters on fuel economy for P-HEV

A better optimization result (fuel economy) could
be achieved if the parameters with high impact
on fuel economy are all selected for the
optimization algorithm. From the simulation
result shown in Figure 6, the control strategy
parameters SOCpax, Targetsoc, Peon, and tos are
selected. The optimization parameter vector in
this paper is [SOCpax, Targetsoc, Peon, toff, Peng,
Pmotor]. HOWever, the generation of the search-
space for PSO would have to go through heavy
computation,  especially for the  multi-
dimensional space. To reduce the computational
load, an approximation method is used to
generate a rough search-space with the
interpolation method in the early optimization
stage. The optimized results with/without the
approximation method for one dimensional case
are compared in Figures 7(a) and 7(b). In normal
approach without approximation, the
computational load is defined as 100% and its
optimal fuel economy is used as the reference for
comparison. The results in Figure 7(a) show that
the computational load is significantly reduced in
both P-HEV and S-HEV by using the

approximation does not cause large errors in fuel
economy as shown in Figure 7(b).

Similarly, the simulation is carried out to obtain
the optimum parameters for various driving cycles.
The profile of the driving cycles with 2, 4, and 6
NEDC are shown in Figure 8. Table 3 summaries
the specifications for these driving cycles. The
optimum parameters from 2, 4, and 6 NEDC are
used for these three driving cycles. Figure 9
represents the average and the standard deviation
of the fuel economy in three driving cycles using
the optimized parameters from 2 NEDC, 4 NEDC,
and 6 NEDC, respectively. The results show that
using the optimized parameters from 6 NEDC for
the three driving cycles provides the largest
average value and the smallest standard deviation
in fuel economy. Using the optimized parameter
from 2 NEDC for these three driving cycles
achieves the smallest fuel economy and the largest
standard deviation. Since the mainly difference
among these three driving cycles is the distance,
the results may suggest that using the parameters
optimized by a longer distance for the driving
cycles with various distances has a smaller

approximation ~ method; moreover,  this deviation and a better average fuel economy.
100%
80%
B without
60% approximation
40% with
approximation
20%
0% )
Parallel HEV Series HEV

(&) Computational load
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Figure 7: Study the efficiency of the approximation method for optimization
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Table 3: Specifications of various driving cycles

2 NEDC 4 NEDC 6 NEDC
Cycle time (s) 2361 4723 7085
Distance (mile) 13.6866 27.3732 41.0598
Maximum 74.6 74.6 74.6
Speed (mile/h) Average 20.8601 20.8601 20.8601
Standard deviation 19.23 19.23 19.23
Maximum 1.0729 1.0729 1.0729
Acceleration (m/s?) | Average 0.594 0.594 0.594
Standard deviation 0.25222 0.25209 0.25205
Maximum -1.4305 -1.4305 -1.4305
Deceleration (m/s?) | Average -0.78881 -0.78881 -0.78881
Standard deviation 0.21749 0.21734 0.21729
Number 26 52 78
Sto Frequency (stop/mile) | 0.001180403 | 0.001180403 | 0.001180403
P Duration (s) 588 1176 1764
Percent of cycle (%) | 24.904701 24.899428 24.897671
32.20
=
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5
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E
> 30.70
IS
o
S 30.20 -
3
T 29.70 -
T
29.20 -
2 NEDC 4 NEDC 6 NEDC
Optimized parameters for 2, 4, and 6 NEDC

Figure 9: Fuel economy for various driving cycles

In this paper, UDDS is also used as the driving
cycle to compare with the results from NEDC. It
is found that the values of some optimum
parameters in UDDS are quite different from the
ones obtained using NEDC as the driving cycle.
This may be due to the fact that more
characteristics of the driving cycle, besides the
driving distance, are different. In the future work,
the relation between the optimized parameters
and the characteristics of driving cycles (such as
average speed, idle duration, stop frequency,
acceleration and  deceleration) will  be
investigated. This could help to devise a dynamic
control strategy for different driving cycles.
Thus, good fuel economy could be expected for
the condition without pre-defined/predictive
driving cycles.

Furthermore, the optimization objective in this
paper is to maximize fuel economy. The
optimization parameters include component sizing
and control strategy parameters. In control
strategy, the fuel economy is related to the battery
performance on charging and discharging. The
charging and discharging cycles, depth of
discharge, and driving frequency all have an
impact on battery’s life time and durability. In
view of the component availability and price, it
may be necessary to further consider the price-
performance trade-off for key components. The
optimization may take the above discussed factors
(fuel economy, battery life time, component
performance, and component cost) into
consideration by using the cost to build up the
relation with these factors. The relation of the costs
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with the battery life time and component sizing
can be found in [8-9].

4 Conclusions

This paper studies the effect of different control
strategy parameters and component sizing on fuel
economy of HEVs. The ones with significant
effects (SOCpax, Targetsoc, Peon, toff, Peng, and
Pmotor) are used in the PSO algorithm with the
proposed approximation method to reduce the
computational load of the optimization
algorithm. The optimized parameters for
different driving cycles are investigated. The
simulation results imply that using the optimized
parameters from a longer distance for the driving
cycles with various distances achieves a better
result in fuel economy. The further investigation
on the relation between the optimized parameters
and the characteristics of driving cycles has the
potential to design a dynamic advising system for
control strategy parameters. This system may
provide good performance on the driving cycles
without prediction.
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